
BDD-Based Synthesis of Reconfigurable Single-Electron
Transistor Arrays

Zheng Zhao1, Chian-Wei Liu2, Chun-Yao Wang2, and Weikang Qian1

1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China.
2Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

Abstract—Single-electron transistor (SET) is an ultra-low power device,
which has been demonstrated as a promising alternative for CMOS
devices in reducing power consumption. A suitable structure for realizing
logic function using SET is a binary decision diagram (BDD)-based SET
array. Previous works proposed product term-based automated synthesis
methods to map a given logic function onto an SET array. In this work, we
propose a novel BDD-based synthesis method that exploits the structure
similarity between an SET array and a BDD. Our method transforms a
BDD of a Boolean function into a planar graph and further maps the
graph onto an SET array. Experiment results showed that compared to
the state-of-the-art synthesis method, our method saves 51% in area on
average and is more than 16 times faster.

I. INTRODUCTION

With continued scaling of CMOS technology, power consumption
has emerged as a major obstacle to sustaining Moore’s law. One
solution to this problem is to explore novel devices as substitutes
to CMOS device. Among many nanoscale devices researchers have
proposed, single-electron transistors (SETs) have been considered as
a promising choice due to their ultra-low power operation involving
only a few electrons [1] [2].

However, the limited number of electrons during the operation of
the device also significantly reduces its driving capability. To address
this problem, a binary decision diagram (BDD)-based architecture
was proposed for implementing logic functions using SETs [3] [4]
[5]. The interconnection of SET devices in this architecture forms a
2-dimensional array of hexagons, as shown in Fig. 1a. To enhance the
flexibility of the BDD-based SET array, a recent work also proposed a
reconfigurable realization using wrap gate tunable tunnel barriers [6].

As we will show in Section II, the BDD-based SET architecture
has special properties and constraints in realizing logic functions. For
example, the Boolean function realized by the SET array is based on
the set of conducting path from the top row of the SET array to
its bottom row. In order to implement large-scale digital circuit with
the SET array, a few automatic synthesis methods were proposed [7]
[8] [9]. These methods start from the BDD representation of a given
Boolean function. However, they do not directly map the BDD onto
the SET array, since an SET array is a planar graph 1, while a BDD
is not. Instead, they extract the product terms from the BDD and then
map these product terms one by one onto the SET array.

In this work, we propose a new algorithm to synthesize SET
arrays. Since the previous approaches separate the BDD into disjoint
product terms, they may fail to exploit the efficient structural sharing
presented in the BDD to be mapped. To utilize such structural
sharing, our method directly transforms a BDD into a planar graph
and then maps it onto an SET array. Experiments demonstrated that
compared to the state-of-the-art product term-based mapping method,
our approach greatly saves the area of the SET array.

1A planar graph is a graph that can be drawn in a way that no edges cross
each other.

The remainder of this paper is organized as follows. Section II
discusses the background, the related works, and the motivation for
our work. Section III shows our new algorithm for synthesizing
constraint-free SET arrays. Section IV extends the new algorithm to
handle two technology constraints of SET arrays. Section V presents
the experimental results. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Single-Electron Transistor Array

An SET array can be presented as a graph of hexagons as shown
in Fig. 1a. In the hexagonal fabric, all the vertical edges are electrical
short. All the sloping edges can be configured as active high, active
low, short, or open. We call these edges configured as either active
high or active low the active edges. All the active edges on the same
row are controlled by the same primary input (PI) x. Active high
edges are controlled by x and active low edges by its complement
x′. Active high edges are conducting when x is logic 1 and non-
conducting when x is logic 0. Active low edges are opposite to active
high edges: they are conducting when x is logic 0 and non-conducting
when x is logic 1.

The output of the function implemented by an SET array is decided
by a current detector at the top of the SET array, which measures
the current coming from the current source at the bottom of the SET
array. If there exists a path for the current to pass through and thus
be detected at the top, the output is 1; otherwise it is 0. For example,
Fig. 1b shows an SET array implementing a ⊕ b. When a = 1 and
b = 0, the left path is conducting and a current can be detected.
However, if a = 1 and b = 1, no current is detected.

Since all the vertical edges are short, we can omit them for ease
of discussion and only keep the configurable edges, as shown in
Fig. 2. This representation, known as the diamond fabric [7], is used
in our following discussion. In this diamond fabric, each node n,
i.e., the root of a pair of left and right edges, has a unique coordinate
(x, y), denoted as Coord(n) to indicate its location. Moreover, we
use Coord(n).x and Coord(n).y to denote the x coordinate and the
y coordinate of the node n, respectively. The location of the current
detector is the origin of the coordinate system. The y value increases
from top to bottom, while the x value increases from left to right.
Two neighboring nodes on a row have their x coordinates differ by
2. The configuration of the two edges rooted at a node is indicated
in a pair of parentheses, such as (high,low), (open,open), etc., where
the first one in the pair indicates the state of the left edge and the
second one indicates the state of the right edge.

Due to the low driving capability of an SET device, an SET array
has an important constraint that for any variable assignment, there is
at most one conducting path.

A reconfigurable SET array also imposes two technology con-
straints on the configuration of edges. The first is the fabric constraint.
In an SET array, an active edge is controlled by a metal wire

978-1-4799-6278-5/14/$31.00 ©2014 IEEE 47

(a) (b)

Fig. 1: (a) An SET array fabric. (b) An example of implementing a⊕ b
with an SET array [7].

Fig. 2: An abstract diamond fabric [7].

connected to an input variable or its complement. A reconfigurable
SET array requires the connections of the input variable (for each
row) to be fixed at the fabrication time. Specifically, for each SET
row, its corresponding variable controls all the left active edges and
the complement variable controls all the right active edges, or vice
versa. Therefore, the fabric constraint demands that all the left active
edges of a row are of the same state (i.e., high or low), and all the
right active edges are of the same state that is opposite to the state
of the left active edges (i.e., low or high). Thus, for example, edge
configurations (high,low) and (low,high) are prohibited to appear in
the same row.

The other constraint is the granularity constraint which aims at
reducing the metal wires required to configure the SET array. It
requires the adjacent devices to be in the same operating state,
i.e., active, short, or open. Under the constraint, only four edge
configurations, (high,low), (low,high), (open,open) and (short,short),
are allowed for an SET array.

B. Binary Decision Diagram

A binary decision diagram (BDD) is a directed acyclic graph that
can represent an n-input Boolean function f(x1, . . . , xn) [10]. There
are two types of nodes in a BDD, a terminal node and a non-terminal
node. A terminal node v has a value 1 or 0. A non-terminal node v
has a decision variable and two children, the low child (lo(v)) and the
high child (hi(v)). A high edge (low edge) connects the high child
(low child) to its parent. To distinguish different nodes with the same
variable, we put a number after the variable. For example, in Fig. 3a,
both of the nodes b1 and b2 are with the decision variable b. A BDD
can be converted into a reduced-ordered binary decision diagram
(ROBDD) by restricting variable ordering and applying reduction
rules. For more details about BDD, readers are referred to [10].

A BDD shares two important similarities with a reconfigurable
SET array. First, a high (low) edge of a BDD is functionally same
as an active high (low) edge in an SET array. Second, for any input
assignment, there is at most one conducting path from the root to the
1-terminal in BDD, which is similar to the SET array.

C. Related Works and Motivation

A previous work [6] attempted to manually map a BDD onto an
SET array. However, they did not provide a systematic flow. Important

(a) (b)

(c)

Fig. 3: Comparison of our BDD-based method and the previous product
term-based method. (a) The input ROBDD to be mapped. We omit those
edges connected to the 0-terminal of the ROBDD. (b) The mapping result
using our method. (c) The mapping result using the product term-based
method of [8].

issues including deciding coordinates of BDD nodes and resolving
crossing edge in BDD were not mentioned in their work.

Besides manual design, there are a few works devoted to automated
synthesis of an SET array [7] [8] [9]. These works are product
term-based, in which a Boolean function is represented in a non-
overlapping sum-of-product (SOP) form. The product terms are
then mapped one by one onto an SET array. In these works, non-
overlapping product terms are obtained by traversing the ROBDD of
a function. Fig. 1b shows an example of mapping the function a⊕b by
the previous product term-based methods. After obtaining the product
terms 10 and 01, the left path is configured for 10, and then the right
path is configured for 01. Among all the previous works, [8] provides
the best result in terms of the area of the SET array.

However, SOP is a non-graphic data structure that loses structural
information compared with graphic data structures like BDDs. More-
over, as mentioned above, BDDs and SET arrays also share some
common properties that can be exploited, such as the limitation on
the number of conducting paths. In this work, we try to directly map
a BDD onto an SET array through proper BDD transformations.

Fig. 3 shows an example of mapping an ROBDD (in which the
edges connected to the 0-terminal are omitted) to an SET array by
our method (Fig. 3b) and by the product term-based method of [8]
(Fig. 3c). Comparing the results, we observe that our BDD-based
method could exploit the original graphic structure to significantly
reduce the area of the mapping, while this feature is not utilized in
the product term-based method.

III. TECHNOLOGY-CONSTRAINT-FREE MAPPING

In this section, we show our BDD-based algorithm to synthesize
technology-constraint-free reconfigurable SET arrays. Although in

48

realistic situations, the synthesis of the SET arrays should consider
the fabric and the granularity constraints, we discuss this algorithm
first, since it serves as the basis for the algorithms that handle these
technology constraints.

We assume that the logic function to be mapped is given to us
in the form of an ROBDD. The idea of our method is to gradually
transform the input ROBDD to a planar graph so that at the end
of the transformation, it corresponds to the resultant SET array. Our
method has three major steps.

The first step is to obtain a “full-level” BDD from an input
ROBDD by adding intermediate nodes to the given ROBDD. The
full-level BDD has the property that each path from the root to
a terminal node visits all the input variables. The second and the
third steps are executed over each level of the full-level BDD. The
second step, pre-mapping, transforms a BDD into a planar form and
assigns coordinates to the BDD nodes. However, two different BDD
nodes may be assigned to the same location. The third step, conflict
resolving, solves this problem and finally maps the planar structure
onto an SET array. We will discuss the three steps in the following
subsections.

Since there are no 0-terminals in an SET array, we do not need to
map ROBDD paths that end at the 0-terminal. Thus, we can ignore
the edges connected to the 0-terminal in an ROBDD. Fig. 4a shows
an original ROBDD and Fig. 4b shows the ROBDD with the edges
connected to the 0-terminal deleted. This makes some nodes have
only one child. In the following discussion, we suppose that the input
is an ROBDD in which only paths leading to the 1-terminal are
preserved.

A. Adding Intermediate Nodes

The first step transforms a given ROBDD to a non-reduced OBDD
so that every path from the root to the 1-terminal visits all the
variables. We call such a BDD a “full-level” BDD. For example, for
the BDD shown in Fig. 4b, the set of variables is a, b, c, d. However,
there are some paths in the ROBDD that do not go through all the
variables, e.g., the path a1→ d1→ 1, which does not go through the
variables b and c. The first step transforms that BDD into a full-level
BDD shown in Fig. 4c.

The transformation is achieved by adding the necessary intermedi-
ate nodes into the original ROBDD. In constructing the ROBDD, an
important step is to remove redundant tests [10]. It means to remove
each intermediate node n which satisfies lo(n) = hi(n). The first
step we apply here is essentially the reverse of removing redundant
tests.

We do this by traversing the BDD from the root to the terminal.
Each time when we encounter an edge that connects to two nodes
whose variables are not adjacent in the order, we will add intermediate
nodes. For example, for the edge (a1, d1) shown in Fig. 4b, we add
two nodes b2 and c2 as shown in Fig. 4c. The node b2 has both of
its high edge and low edge connected to the node c2, while the node
c2 has both of its high edge and low edge connected to the node d1.
Note that the global Boolean functions of the nodes b2 and c2 are
the same as that of the node d1. Thus, the function of the BDD does
not change.

Note that for each added intermediate node, both of its high edge
and low edge are connected to the same child. Thus, the Boolean
function of an added node is equivalent to the Boolean function of
its child. When mapping this pair of parent-child nodes onto the SET
array, we can connect them by a single short edge.

When adding an intermediate node, we also check whether the
node to be added is redundant. That is, whether there exists a node
in the graph that has both the same variable and the same global

(a) (b) (c)

Fig. 4: Adding intermediate nodes. (a) The original ROBDD. (b) The
BDD obtained from the BDD in (a) by removing all edges connected to
the 0-terminal. (c) The full-level BDD.

(a) (b)

Fig. 5: A mapping example. (a) Two adjacent levels in the full-level
BDD. (b) The mapping result of (a).

function. For example, in Fig. 4b, after we have expanded the edge
(a1, d1) by adding the two intermediate nodes b2 and c2, we further
process the edge (b1, d1). Note that we need to add a node with
variable c and with both of its high edge and low edge connected
to the node d1. This node is redundant with regard to the node c2.
Thus, we connect the low edge of b1 to the node c2, as shown in
Fig. 4c.

B. Pre-mapping

The main purpose of pre-mapping is to transform a BDD into a
planar form. As shown in procedure MAP() in Algorithm 1, pre-
mapping (procedure PREMAP()) is performed for each level of the
full-level BDD from the top level to the bottom level.

Assuming that a parent level of BDD nodes is mapped to the SET
array, pre-mapping maps its child level of BDD nodes based on the
mapping of the parent level. It starts from the leftmost node of the
parent level and visits each node of the parent level from left to right
in sequence. When visiting a parent node, it will map the child(ren) of
that node to the SET array by assigning coordinates to the child(ren).
Pre-mapping ensures that each pair of a parent node and a child node
in BDD is mapped adjacently in the SET array. Here, two nodes are
said to be adjacent in an SET array if they are mapped to the two
ends of an SET edge.

However, sometimes a child of the parent node under consideration
has already been mapped to a location that is not adjacent to the
parent node. This happens when the child is also a child of another
parent node that is previously visited. In order to maintain the correct
function, we need to duplicate the BDD node.

Fig. 5 shows an example. We map the level of the nodes with the
variable b based on the mapping of the level of the nodes with the

49

variable a. Suppose that the nodes b1 and b2 have just been mapped
to the coordinates shown in Fig. 5b. When we continue to process the
node a3 and its child b1, we find that the node b1 has been mapped,
but it is not adjacent to its parent a3. In this case, we make a copy
of the BDD node b1 as a new BDD node b1′ and connect the node
a3 to this copy. Consequently, the node b1′ can be mapped adjacent
to the node a3 in the SET array by a short edge.

When duplicating a BDD node, the connection of this BDD node to
the nodes on the next level are also duplicated. In essence, this step is
the reverse of removing duplicate nonterminals used in constructing
an ROBDD [10]. This may create new parent-child pairs, with parents
in the current level and children in the next level. Some of these new
parent-child pairs may be non-adjacent, but they will be resolved in
the same way when doing pre-mapping on the next level.

As node duplication does not change the original function or
introduce multiple conducting paths, the operation results in a valid
SET mapping.

With the help of node duplication, each child of a parent node can
now be mapped adjacent to the parent node. When mapping a child
node to the SET array, we exploit the sharing of children nodes in
BDD. If we find that the current parent node and its right neighbor
at the same level are adjacent (e.g., the nodes a1 and a2 in Fig. 5b)
and they share a common child, then we map this common child
between these two nodes on the next level. For example, in Fig. 5,
the node b2 is a common child of the adjacent parent nodes a1 and
a2. Thus, it is mapped to the location shown in Fig. 5b. Once the
common child is mapped, we will map the other child of the parent
to its left. If there is no common child, we map the child adjacent
to the parent using the following rule: if the lower left side of the
parent is not occupied by any node, we put the child there; otherwise
we put it to the lower right side of the parent.

C. Conflict Resolving

As shown in procedure MAP() in Algorithm 1, conflict resolving
(procedure CONFLICT_RESOLVE()) is performed for each level of
the full-level BDD from the top level to the bottom level, following
pre-mapping of a level.

Even though pre-mapping has obtained a planar structure, it may
not be directly mappable to an SET array as two nodes of different
functions may be mapped to the same location. When it happens
we say there is a coordinate conflict. The two nodes involved in the
conflict are called conflicting nodes. For example, in Fig. 6a, c1 and
c2 are the children of b1, and c3 and c4 the children of b2. Pre-
mapping has mapped c2 and c3 to the adjacent locations of their
parents b1 and b2, respectively. However, the result is that c2 and
c3 are mapped at the same location, which is not a legal mapping.
Conflict resolving addresses this problem and returns a final mapping.

Two techniques, row expansion and side expansion, could be used
to solve coordinate conflicts. The idea of both techniques is to create
extra space to separate conflicting nodes from each other.

Row expansion solves coordinate conflicts by inserting dummy
levels between the current level which has a coordinate conflict and
the parent level. Dummy levels are composed of two kinds of edges:
short edges for extending and separating the parents of the conflicting
nodes and open edges for avoiding invalid paths. We call the short
edges in the expanded rows extended edges.

As Fig. 6b shows, to solve the conflict of the nodes c2 and c3, we
use two short edges to expand the parent nodes b1 and b2 to their
new locations b1′ and b2′, which leaves enough space to put their
respective child c2 and c3 without conflict. If there are other nodes
in the parent level, they are also expanded by parallel short edges.
As Fig. 6c shows, if the nodes a2 and a3 are expanded to a2′ and

(a) (b)

(c)

Fig. 6: (a) An example of coordinate conflict. (b) Row expansion to solve
coordinate conflict. (c) An illustration that row expansion should expand
an entire row.

(a) (b)

Fig. 7: (a) An example of side expansion. (b) A case that prohibits the
side expansion.

a3′ to solve a coordinate conflict, then the rest of the nodes a1, a4
and a5 should also be expanded.

No controlling variable is required for a dummy level. Yet, for
technology consistency, we can simply assign any variable to the
dummy level.

However, row expansion is expensive in area. Thus, we propose
another method, side expansion, to resolve conflict. Side expansion
creates additional space for mapping by expanding only one parent
of the conflicting nodes. It can be applied if both of the following
conditions are met: 1) the parent of one conflicting node appears in
the leftmost or the rightmost, i.e., the “side”, of their level, and 2)
there are un-configured edges to allow side expansion.

In the previous example shown in Fig. 6a, if the node b1 happens
to be at the leftmost of its level, we may expand it by two short
edges on the same level. Fig. 7a shows the result of this expansion.
Similar with the case in row expansion, the short edges in the side
expansion are also called extended edges. However, it is possible that
there are no additional edges for configuration to expand a side node.
As Fig. 7b shows, if b1 has another parent a0, then the side expansion
of b1 is impossible.

Generally, side expansion is more area-efficient in resolving a
conflict than row expansion. Thus, in our algorithm we first check if
it is applicable. If not, row expansion will be used.

The synthesis of an SET array requires the configuration informa-
tion of the edges. The edge configuration can be easily obtained

50

according to how the two nodes at the end of a SET edge are
connected in the BDD. Specifically, we have the following four rules.

1) If the two nodes are connected by a high edge in BDD, we
configure the SET edge as active high.

2) If the two nodes are connected by a low edge in BDD, we
configure the SET edge as active low.

3) If the two nodes are connected by both a high edge and a low
edge in BDD, we configure the SET edge as short.

4) If the two nodes are not connected in BDD, we configure the
SET edge as open.

For example, in Fig. 5b, the edge between the nodes a1 and b1 is
configured as active high, while the edge between the nodes a3 and
b1′ is configured as short.

The whole flow of mapping a full-level BDD to a technology-
constraint-free SET array is shown in Algorithm 1. Proce-
dure MAP() manipulates one level at a time using pre-mapping
(procedure PREMAP()) and conflict resolving (procedure CON-
FLICT_RESOLVE()) described above.

In the pseudo-code, nV ar is the number of controlling variables,
which equals the number of levels (excluding the terminal level) of
the given BDD. nj is the j-th node on a certain level. After initializing
the coordinate for the root node, the mapping procedure is run nV ar
times until all the successive levels, including the terminal level, are
mapped.

Some of the transformations discussed above, such as adding inter-
mediate nodes and duplicating nodes, can be viewed as the reverse of
the common BDD reduction operations. Although they could increase
the size of a BDD, they are necessary in our procedure, since our
goal is to map the function represented by a BDD to the planar SET
array. Further, the sharing strategy we apply ensures that we add
nodes only when necessary. As the experimental results in Sec. V
demonstrated, the BDD size increase due to these transformations is
moderate for most benchmarks.

IV. MAPPING UNDER THE TECHNOLOGY CONSTRAINTS

In this section, we show our methods to handle two technology
constraints, the fabric constraint and the granularity constraint dis-
cussed in Section II. To handle the fabric constraint, we only need to
make small changes to the constraint-free mapping algorithm shown
in Section III. Besides the fabric constraint, we usually also need
to consider the granularity constraint. Thus, we further propose a
procedure to transform a mapping that satisfies the fabric constraint
to one that satisfies both constraints.

A. Mapping under the Fabric Constraint

The fabric constraint requires all the left active edges of a row are
active high, and the right active edges are active low, or vice versa.
To satisfy this constraint, three changes are made in the flow of the
original constraint-free mapping.

First, the fabric type (high,low) or (low,high) is decided before
mapping a level. The type can be set for the whole SET array,
or tailored for each row. We use the second method. The type is
determined for each row according to the first node sharing in the
row that implies one of the fabric types. For example, if the shared
child is connected to its left parent by a low edge and to its right
parent by a high edge, the fabric type is set to (high,low). If the type
cannot be determined in this way, the default is (high,low).

Second, once the type of the row is set, mapping of nodes must
follow the type. For example, given the type (high,low), we cannot
map a low child to the left side of the parent.

Third, node sharing is assessed under the fabric constraint. For
example, given the type (high,low), the high child of a parent node

Algorithm 1 Technology-constraint-free Mapping.

1: procedure MAP(a full-level BDD)
2: initiate the root coordinate;
3: for i = 1 to nV ar do
4: PREMAP(i);
5: CONFLICT_RESOLVE(i);
6: end for
7: end procedure
8: procedure PREMAP(level i)
9: for each node nj in level i− 1 do

10: if child(ren) of nj is mapped away from nj then
11: duplicate the child(ren);
12: end if
13: if nj and nj+1 are adjacent and have a shared child then
14: map the shared child in middle;
15: map its sibling of parent nj ;
16: continue;
17: end if
18: map children of nj to its adjacent location;
19: end for
20: end procedure
21: procedure CONFLICT_RESOLVE(level i)
22: for each node of level i do
23: if there exists a coordinate conflict then
24: if side expansion is possible then
25: do side expansion;
26: else
27: do row expansion;
28: end if
29: end if
30: end for
31: end procedure

n and the low child of the right neighbor of n cannot be shared even
if they are identical.

B. Mapping under the Granularity Constraint

The granularity constraint permits only four edge configura-
tions over the SET array: (high,low), (low,high), (short,short) and
(open,open). When it is imposed, a procedure called network expan-
sion is executed to fix the prior mapping result, in which only the
fabric constraint is satisfied. The resultant SET array is called an
expanded network in which both constraints are satisfied.

The prior result violates the granularity constraint as configurations
like (high,open), (open,short) are allowed in it. For example, in
Fig. 5b, the two edges rooted at the node a2 has an illegal configu-
ration (high,open). Moreover, row expansion using (open,short) and
(short,open) edges is also prohibited with the granularity constraint.
Clearly, we cannot impose the configurations directly on the mapping,
such as changing (high,open) to (high,low), as it would change the
Boolean function.

Our strategy to handle the granularity constraint is to expand
the prior network with its original node connections, while creating
enough space between nodes, which allows us to impose granularity
configurations. For example, Fig. 8a shows a diamond in the prior
mapping, and Fig. 8b expands the diamond into four. In the expanded
network, parents and children are separated by two rows rather than
one, and a functional edge in the prior mapping is replaced by two
edges of the same type. A functional edge is defined to be either an
active edge or a short but non-extended edge in the prior mapping.
For example, the edge (a1, b1) in Fig. 8a is a functional edge and it is
replaced by two edges e1 and e3 in Fig. 8b. In the expanded network,
one PI controls two adjacent rows. For example, PI a controls the

51

first two rows. Further, open edges are added to avoid false paths
(e.g., path e4→ e11).

Our algorithm to perform network expansion is shown in Algo-
rithm 2. It takes a prior mapping which satisfies the fabric constraint
as the input. It includes two major steps: 1) for each node in the
prior mapping, deciding its new coordinate in the expanded network
(Lines 2–8 in Algorithm 2), and 2) configuring the edges (Line 9 in
Algorithm 2).

1) Deciding Coordinates: To decide the coordinates of the nodes
in the expanded network, we expand each level of the nodes in the
prior mapping (procedure EXPAND_LEVEL() in Algorithm 2) in turn
from the bottom level to the top level of the SET array. The parent
level is expanded based on its child level.

In addition to the notations in Algorithm 1, we define Coord(n)
and Coord′(n) as the coordinates of a node n in the prior mapping
and in the expanded network, respectively. Moreover, we denote pk
as the k-th direct parent of a certain node. A direct parent of a
node is the parent connected to the node by one functional edge and
possibly one or more extended edges. For example, in Fig. 6b, the
direct parents of the nodes c1 and b1′ are the nodes b1′ and a1,
respectively. In Fig. 7a, the direct parent of the node b1 is the node
a1. The number of direct parents of a node in an SET array is at
most two.

In handling the granularity constraint, we only process direct
parents of the current node. Although some nodes may connect to
the current node through the extended edges in the prior mapping,
they are ignored. As a result, although the prior mapping may have
multiple expanded rows, all the nodes on these expanded rows are
ignored. Thus, the height of the SET array is not affected by the row
expansion in the prior mapping.

Algorithm 2 Network Expansion.

1: procedure NETWORK_EXPANSION(prior mapping)
2: for each node ni in the terminal level do
3: Coord′(ni).x← 2Coord(ni).x;
4: Coord′(ni).y ← Coord(ni).y;
5: end for
6: for i = nV ar − 1 to 0 do
7: EXPAND_LEVEL(i);
8: end for
9: EDGE_CONFIGURE();

10: end procedure
11: procedure EXPAND_LEVEL(level i)
12: for each node nj in level i+ 1 do
13: for each direct parent pk of node nj do
14: if pk has been expanded then
15: continue;
16: end if
17: if pk is previously mapped to the right of nj then
18: Coord′(pk).x← Coord′(nj).x+ 2;
19: else
20: Coord′(pk).x← Coord′(nj).x− 2;
21: end if
22: Coord′(pk).y ← Coord′(nj).y − 2;
23: end for
24: end for
25: end procedure

In the main procedure NETWORK_EXPANSION(), we first double
the x coordinates of the nodes in the terminal level. With this, the
distance between the adjacent terminal nodes becomes twice the
original distance. The y coordinates remain the same. Then, we
enter the procedure EXPAND_LEVEL(). For each node nj of the
last expanded level, we expand its direct parent pk by the following
rules.

(a) (b)

(c) (d)

Fig. 8: Examples of network expansion. (a) A prior mapping. (b) Expan-
sion of the mapping in (a). (c) Another prior mapping. (d) Expansion of
the mapping in (c).

We first check if pk has been already expanded. This happens when
the left neighbor of nj , nj−1, also has pk as the direct parent. In
this case, pk has already been expanded when we process the node
nj−1. If so, we move to the next direct parent of the node nj (if
any). On the other hand, if pk has not been expanded, then we will
expand pk based on the relative location of pk and nj in the prior
mapping: if pk is mapped to the right of the node nj , we set its new
x coordinate Coord′(pk).x to Coord′(nj).x+2; otherwise, it is set
to Coord′(nj).x− 2. The y coordinate is set to Coord′(nj).y − 2,
which is two levels above the child node nj .

For example, Fig. 8a is a prior mapping and Fig. 8b is the expanded
network of it. Suppose that we have already processed the level
with the variable b. As a result, the nodes b1 and b2 have been
mapped to the coordinates (−2, 4) and (2, 4), respectively, as shown
in Fig. 8b. Now we expand their parent level. We do this by taking the
node b1 and checking its parent a1. We notice that a1 is originally
mapped to the right of the node b1. Applying the above rules, the
new x coordinate of a1 should be set to Coord′(b1).x + 2 = 0.
Its y coordinate is set to Coord′(b1).y − 2 = 2. Similarly, Fig. 8d
shows the expanded network of Fig. 8c. In Fig. 8d, suppose that the
nodes b1 and b2 have been mapped to the coordinates (−4, 4) and
(4, 4), respectively. The node a1 is then placed at a location with x
coordinate being Coord′(b1).x + 2 = −2 and y coordinate being
Coord′(b1).y − 2 = 2.

2) Configuring Edges: As the previous step shows, in the ex-
panded network, parents and children are separated by two rows
rather than one. Edge configuration is no longer trivial and it
is a critical step to maintain both the functional correctness and
granularity constraint. Given an expanded network with only node
coordinates, the edges are determined by applying the following steps.

First, for every direct parent-children pair in the prior mapping
connected with a functional edge e, if their x coordinates differ by
2, we use two edges of the same type of e to connect them in the
expanded network. For example, the active high edge (a1, b1) in

52

TABLE I: Comparison of our method with the state-of-the-art method [8].

Benchmark #PI #PO #hex ratio time(sec) ratio #BDD node ratioby [8] ours by [8] ours original after 1

C17 5 2 54 33 0.61 0.01 0.00 0.00 10 17 1.70
cm138a 6 8 460 88 0.19 0.01 0.00 0.00 56 104 1.86
x2 10 7 397 393 0.99 0.01 0.00 0.00 53 133 2.51
cm85a 11 3 686 234 0.34 0.01 0.00 0.00 42 83 1.98
cm151a 12 2 521 577 1.11 0.01 0.00 0.00 34 148 4.35
cm162a 14 5 578 458 0.79 0.02 0.00 0.00 50 138 2.76
cu 14 11 415 618 1.49 0.01 0.00 0.00 87 144 1.66
cmb 16 4 376 86 0.23 0.01 0.00 0.00 52 75 1.44
cm163a 16 5 391 341 0.87 0.01 0.00 0.00 45 100 2.22
pm1 16 13 586 278 0.47 0.02 0.00 0.20 78 117 1.50
pcle 19 9 751 599 0.80 0.01 0.00 0.40 95 184 1.94
sct 19 15 3168 842 0.27 0.02 0.00 0.20 124 240 1.94
cc 21 20 1040 622 0.60 0.01 0.00 0.40 96 140 1.46
i1 25 16 1190 538 0.45 0.01 0.00 0.04 77 120 1.56
lal 26 19 3312 1219 0.37 0.05 0.00 0.08 164 328 2.00
pcler8 27 17 1920 1411 0.73 0.04 0.02 0.50 164 352 2.15
frg1 28 3 13962 9756 0.70 0.14 0.00 0.02 96 934 9.73
c8 28 18 2026 1286 0.63 0.03 0.02 0.67 138 311 2.25
term1 34 10 35975 2895 0.08 0.51 0.02 0.04 173 547 3.16
count 35 16 4590 2776 0.60 0.07 0.00 0.06 232 736 3.17
unreg 36 16 1515 1132 0.75 0.03 0.02 0.67 112 245 2.19
b9 41 21 9112 2616 0.29 0.10 0.04 0.40 192 539 2.81
cht 47 36 3556 2148 0.60 0.04 0.04 1.00 191 310 1.62
apex7 49 37 49004 13737 0.28 0.41 0.06 0.15 510 2554 5.01
example2 85 66 14402 9091 0.63 0.61 0.14 0.23 720 1348 1.87
steppermotordrive 29 29 22994 6160 0.27 0.31 0.06 0.19 575 1313 2.28
usb_phy 113 116 28960 15399 0.53 0.58 0.42 0.72 674 1145 1.70
sasc 133 129 54987 22492 0.41 3.63 0.70 0.19 994 2104 2.12
i2c 147 142 115944 35209 0.30 11.99 1.10 0.09 1983 4454 2.25
simple_spi 148 144 129039 33472 0.26 12.08 1.04 0.09 1643 4161 2.53
i8 133 81 111992 136778 1.22 10.09 0.80 0.08 2537 20141 7.94
geomean 3314.17 1615.06 0.49 0.08 0.00 0.06 159.72 378.61 2.37

1After transformations including adding intermediate nodes and node duplication.

Fig. 8a is mapped to two active high edges e1 and e3 in Fig. 8b.
Otherwise, if the x coordinate difference of a pair of a direct parent
and its child is larger than 2, we configure short edges in addition to
two edges of the same type of e. For example, in Fig. 8c, the nodes
a1 and b2 are originally connected with an active low edge. In the
expanded network shown in Fig. 8d, we configure two active low
edges e2 and e10 followed by four short edges e11, e12 . . . , e14 to
connect the nodes a1 and b2 together.

The second step configures edges that are enforced by three of the
granularity configurations (high,low), (low,high) and (short,short). For
example, in Fig. 8b, by the granularity constraint, the edges e2 and
e4 are configured as active low since the edges e1 and e3 have been
configured as active high in the previous step. Likewise, the edges
e7 and e13 are configured as active high; the edges e12 and e16 are
configured as short.

The third step configures the remaining edges as open. Open
edges prevent invalid paths in the expanded network. For example,
in Fig. 8b, the edge e6 is set as open. Therefore, although the
granularity constraint enforces e2 to be an active low edge, invalid
path e2→ e6 is prevented. Since the configuration in the second step
does not match an edge that is not open with an open edge, thus,
each open edge is paired with another open edge. In other words,
only (open,open) configuration is possible in this step.

By the above construction, we make sure that the granularity
constraint is satisfied. Also, the Boolean function is preserved by
two facts:

1) All the functional connections in the prior mapping are correctly
preserved in the extended network, with edges controlled by the
same variable.

2) Only these functional connections in the prior mapping are
possible in the extended network, because the existing of the
open edges prevents any illegal connections.

V. EXPERIMENTAL RESULTS

We implemented our method in C using CUDD package [11]. The
experiments were conducted on a 2.40GHz Linux platform. A set of
MCNC and IWLS 2005 benchmarks [12] were used. Same as the pre-
vious methods in [7] and [8], we apply the BDD reordering heuristic
CUDD_REORDER_SYMM_SIFT [11] after reading a benchmark;
also same as the previous methods, for a multiple-output function, we
mapped the function of each primary output (PO) separately onto an
SET array. The area of a benchmark is measured by the total numbers
of hexagons in the SET arrays for all the POs. In the experiment, we
assumed that both the granularity constraint and the fabric constraint
are applied.

Table I shows the experimental results. We show the number of
hexagons, total runtime, and the respective ratios of our proposed
algorithm and the algorithm proposed in [8] in Columns 4 to 9.
To study how our technique affects the BDD complexity, we also
show the number of nodes in the original BDD and that after adding
intermediate nodes and duplicating nodes in Columns 10 and 11,
respectively. Their ratios are given in the last Column. Note that here

53

we do not consider the effect of network expansion operation on
the BDD size, since its effect on complexity is just as multiplying a
constant. The number of nodes for each benchmark is measured by
adding together the nodes for each of its POs. The geometric means
of the numbers of hexagons, runtime, the number of nodes, and the
respective ratios are shown in the last row in the table.

We can see that compared to the method in [8], our method saves
51% area on average in terms of the number of hexagons. The average
runtime of our algorithm is less than 0.005 second, and the longest
runtime of all benchmarks is less than 1.1 seconds, which is a large
improvement over the previous method. The main reason for the
runtime improvement is that the previous method spends a large
amount of time in handling false paths, while our method avoids
them by construction.

The average percentage of BDD node increase due to adding
intermediate nodes and node duplication is 137%. This shows that
BDD size increase is not large for the benchmarks. However, the
listed benchmarks are small compared to practical circuits. For
example, even though i2c has 147 PIs and 142 POs, most PO
functions use only a small fraction of the PIs and therefore its BDD
size increase is small. For benchmarks containing large functions
(e.g., frg1 and i8), the size increase is larger. In our future work,
we will further study the effect of the size increase caused by BDD
transformations on larger benchmarks.

VI. CONCLUSION

In this work, we propose a new approach to synthesize logic
function with reconfigurable SET arrays. Our approach is BDD-
based which takes the advantage of the structural similarity between
a BDD and an SET array. Our method transforms an ROBDD into
a planar graph which enables efficient mapping onto an SET array.
Compared to the state-of-the-art method proposed in [8], the SET
array synthesized by our approach has a much smaller area.

ACKNOWLEDGEMENT

This work is supported by a grant from the National Natural
Science Foundation of China (NSFC), Project No. 61204042.

REFERENCES

[1] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon
nanotube single-electron transistors at room temperature,” Science, vol.
293, no. 5527, pp. 76–79, 2001.

[2] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon single-electron quantum-
dot transistor switch operating at room temperature,” Applied Physics
Letters, vol. 72, no. 10, pp. 1205–1207, 1998.

[3] S. Kasai, M. Yumoto, and H. Hasegawa, “Fabrication of GaAs-based
integrated 2-bit half and full adders by novel hexagonal BDD quan-
tum circuit approach,” in International Semiconductor Device Research
Symposium, 2001, pp. 622–625.

[4] N. Asahi, M. Akazawa, and Y. Amemiya, “Single-electron logic device
based on the binary decision diagram,” IEEE Transactions on Electron
Devices, vol. 44, no. 7, pp. 1109–1116, 1997.

[5] H. Hasegawa and S. Kasai, “Hexagonal binary decision diagram quan-
tum logic circuits using Schottky in-plane and wrap-gate control of
GaAs and InGaAs nanowires,” Physica E: Low-dimensional Systems and
Nanostructures, vol. 11, no. 2, pp. 149–154, 2001.

[6] S. Eachempati, V. Saripalli, N. Vijaykrishnan, and S. Datta, “Reconfig-
urable BDD based quantum circuits,” in IEEE International Symposium
on Nanoscale Architectures, 2008, pp. 61–67.

[7] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “Automated mapping for reconfigurable single-electron
transistor arrays,” in Design Automation Conference, 2011, pp. 878–883.

[8] C.-E. Chiang, L.-F. Tang, C.-Y. Wang, C.-Y. Huang, Y.-C. Chen, S. Datta,
and V. Narayanan, “On reconfigurable single-electron transistor arrays
synthesis using reordering techniques,” in Design, Automation and Test
in Europe, 2013, pp. 1807–1812.

[9] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “A synthesis algorithm for reconfigurable single-electron
transistor arrays,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 9, no. 1, p. 5, 2013.

[10] R. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, no. 3, pp. 293–
318, 1992.

[11] F. Somenzi, “CUDD: CU decision diagram package release 2.5.0,”
University of Colorado at Boulder, 1998.

[12] “IWLS 2005 benchmarks,” http://iwls.org/iwls2005/benchmarks.html,
accessed: 2014-02-30.

54

